Mechanisms by which cell geometry controls repetitive impulse firing in retinal ganglion cells.

نویسندگان

  • J F Fohlmeister
  • R F Miller
چکیده

Models for generating repetitive impulse activity were developed based on multicompartmental representations of ganglion cell morphology in the amphibian retina. Each model includes five nonlinear ion channels and one linear (leakage) channel. Compartmental distribution of ion channel type and density was designed to simulate whole cell recording experiments carried out in the intact retina-eyecup preparation. Correspondence between the model and physiology emphasized channel-specific details in the impulse waveform, based on phase plot analysis, frequency versus current (F/I) properties, and interspike trajectories for current injected into the soma, as well as the ability to conduct impulses in both orthodromic and antidromic directions. Two general types of model are developed, including equivalent cylinder representations and more realistic compartmentalizations of dendritic morphology. These multicompartmental models include representations for dendritic trees, soma, axon hillock, a thin axonal segment, and axon distal to thin segment. A large number of compartments (</=800) representing a single neuron were employed to ensure that maximum voltage differences between neighboring compartments during the steepest rates of change of membrane potential were acceptably small. Leakage conductance varied from 3 to 8 microS/cm2. The results establish that intercompartmental currents, due to inhomogeneous morphology, dominate membrane currents in the interspike intervals and thus play a major role in determining the impulse spacing and the information carried by impulse trains. Variations in input resistance are far less important than the degree to which ion channels are present in the dendritic compartments for the regulation of F/I properties. Cell geometry, including the thin axonal segment, places significant constraints on the location of ion channels required to support impulse initiation and propagation in both the ortho- and antidromic directions. The site of impulse initiation varies greatly and depends on the stimulus magnitude. Models that conform to physiological constraints also show irregular firing, particularly for near threshold stimulation of the soma, due to multiple sites of impulse initiation. Such behavior could represent an asset to the cells for conveying information under conditions of low contrast stimulation. Multiple spike initiation zones also can provide retinal ganglion cells with a variety of response characteristics, including spike doublets, depending on the level of cell activation. Increasing the diameter of the dendritic equivalent cylinder reduces the impulse frequency (F/I) response. Over a restricted range of ion channel densities in the dendritic tree, phase locking between dendritic membrane oscillations and somatic spiking can occur with dendritic stimulation, and mathematical chaos can be demonstrated when sufficiently thin dendritic processes are present. We conclude that cell morphology is the primary factor in determining firing patterns and the impulse frequency response of a given cell and that differences in channel density distribution across a population of cells plays, at most, a secondary role in this function. This conclusion applies to both synaptic activation and electrode stimulation of the soma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stem ‍Cells in Glaucoma Management

Glaucoma is the leading cause of preventable blindness worldwide. Despite tremendous advances in medical and surgical management of glaucoma in the recent years, the prevalence of glaucoma related blindness is anticipated to increase in the future decades because of the aging population. Stem cells have the potential to change the glaucoma management in several ways. There are several areas of ...

متن کامل

Firing coincidences between neighboring retinal ganglion cells: Inside information or redundant reformatting?

1. Background The simplest reading of the neural code presented by a spiking neuron is the rate at which it fires action potentials (impulses). Of course, extracting only the mean rate overlooks the temporal details of the firing pattern, an aspect that has recently been receiving attention (e.g.: Alonso et al., 1996; Abbott, 2001). It also overlooks any relationships among the population of ne...

متن کامل

Impulse encoding across the dendritic morphologies of retinal ganglion cells.

Nerve impulse entrainment and other excitation and passive phenomena are analyzed for a morphologically diverse and exhaustive data set (n = 57) of realistic (3-dimensional computer traced) soma-dendritic tree structures of ganglion cells in the tiger salamander (Ambystoma tigrinum) retina. The neurons, including axon and an anatomically specialized thin axonal segment that is observed in every...

متن کامل

Correlated firing in rabbit retinal ganglion cells.

A ganglion cell's receptive field is defined as that region on the retinal surface in which a light stimulus will produce a response. While neighboring ganglion cells may respond to the same stimulus in a region where their receptive fields overlap, it generally has been assumed that each cell makes an independent decision about whether to fire. Recent recordings from cat and salamander retina ...

متن کامل

Chloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells

Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimeth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 78 4  شماره 

صفحات  -

تاریخ انتشار 1997